Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Polymeric [dihydrobis(pyrazol-1-yl)borato]potassium(I) and three dihydro-bis(pyrazol-1-yl)borate-magnesium(I) compounds obtained by disproportionation of the Grignard reagent

D. J. Loroño-Gonzalez

Departamento de Química, Universidad de Oriente, Cumaná, Estado Sucre,
Apartado Postal 233, Venezuela
Correspondence e-mail: dlorono@sucre.udo.edu.ve

Received 24 January 2008
Accepted 29 April 2008
Online 14 May 2008

Reaction of the Grignard reagent with polydentate nitrogendonor ligands yields new species with rare magnesium coordination and possible catalytic activity. In the first of the title compounds, poly[[μ_{4}-dihydrobis(pyrazol-1-yl)borato$\left.\kappa^{2} N, N^{\prime}\right]$ potassium(I) $],\left[\mathrm{K}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)\right]_{n}$, (I), polymeric chains form a two-dimensional network in the [100] plane. Each potassium ion is coordinated by four N atoms of pyrazolyl ligands, while weak $(\mu-\mathrm{BH}) \cdots \mathrm{K}^{+}$interactions additionally stabilize the structure. The K and B atoms both lie on a mirror plane. In three new structures obtained by disproportionation of the Grignard reagent, each Mg atom is bound to a $\kappa^{2} N, N^{\prime}$ type ligand, forming the basal plane, and tetrahydrofuran molecules occupy the axial positions. Di- μ-chlorido-bis[di-hydridobis(pyrazol-1-yl)borato]tris(tetrahydrofuran)dimagnesium(II), $\left[\mathrm{Mg}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{3}\right]$, (II), adopts a dimeric structure with $\mu-\mathrm{Cl}-\mathrm{Mg}$ interactions. One of the Mg atoms has an octahedral coordination, while the other has a distorted square-pyramidal environment. However, in the bis-chelate compounds bis[dihydridobis(pyrazol-1-yl)borato$\left.\kappa^{2} N, N^{\prime}\right]\left(\right.$ tetrahydrofuran- κO) magnesium (II), $\left[\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$], (III), and bis[dihydridobis(pyrazol-1-yl)borato$\left.\kappa^{2} N, N^{\prime}\right]$ bis(tetrahydrofuran- κO) magnesium(II), $\quad\left[\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{8^{-}}\right.\right.$ $\left.\mathrm{BN}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$], (IV), the Mg atoms have square-pyramidal and octahedral environments, respectively. The Mg atom in (IV) lies on an inversion centre.

Comment

The geometric characteristics of dihydrobis(pyrazol-1-yl)borate ligands are very similar to those of β-diketonate ions, though cyclopentadienyl (Cp) or pentamethylcyclopentadienyl (Cp^{*}) ligands are comparable to hydrotris(pyrazol-1yl)borate ligands (Trofimenko, 1993). Although pyrazolyl ligands have been considered widely, their solid-state struc-
tures have not been well studied. There is a lack of structural information on dihydrobis(pyrazol-1-yl)borate and hydro-tris(1-pyrazolyl)borate ligands with a Cp behaviour. Dias et al. (1995) have reported an interaction of σ-bonding type between potassium ions and highly fluorinated bis(pyrazol-1yl)borate ligands, while $(\mu-\mathrm{BH}) \cdots \mathrm{K}$ interactions have been observed only for dihydrobis(pyrazol-1-yl)borate ligands. Hu \& Gorun (2001), however, have reported that hydro-tris(pyrazol-1-yl)borate ligands may function not only as σ donors but also as Cp-like π donors.

(I)

(II)

(III)

(IV)

The search for new species with catalytic activity has led to increased attention being paid to studies of reactivity between Grignard reagents and polydentate nitrogen-donor ligands. Reports on this area, dealing with magnesium halides and magnesium alkyls with different solvents, have been published (Ashby \& Arnott, 1968), but little information about their chemical and physical properties is available (Gibson et al., 2000; Bailey et al., 2003).

The present paper reports the structure of ligand (I) in its polymeric form, representing the first example with η^{5}-pyra-zole-, $\kappa^{2} N, N^{\prime}$ - and μ-BH binding modes. Several side products, (II)-(IV), can be obtained by reaction of the corresponding tetrahydrofuran (THF) solution of complex (I) (Trofimenko,

1966, 1993) and a THF solution of MeMgCl at room temperature.

In the polymeric molecular structure of (I) (Fig. 1), each monomer ligand has a butterfly arrangement of three condensed rings, namely two pyrazole rings and a boat-shaped central $\mathrm{BN}_{4} \mathrm{~K}$ unit. The K and B atoms lie on a mirror plane. Selected bond lengths are listed in Table 1. The short $\mathrm{B}-\mathrm{N}$ bond distances in the $\mathrm{H}_{2} \mathrm{BN}_{2}$ group [1.561 (2) \AA] are comparable to the average value for pyrazolyl groups ($1.562 \AA$) retrieved from the Cambridge Structural Database (Version of May 2005; Allen, 2002). The acute dihedral angle of $58.78(16)^{\circ}$ (at atom B1) suggests a deeper boat conformation than that found in similar pyrazabole complexes [35.5 (1) and 33.4 (3) ${ }^{\circ}$; Hanecker et al., 1985]. In (I), the η^{5}-pyrazole $-\mathrm{K}^{+}$distances range from 3.025 (2) to 3.473 (2) \AA [with a $\mathrm{K}^{+} \ldots$ centroid distance of 3.035 (2) \AA]. Comparison of the η^{5}-pyrazole $-\mathrm{K}^{+}$contacts in highly fluorinated bis(pyrazol1 -yl)borate ligands [3.355 (2) \AA] and η^{5}-indole $-\mathrm{K}^{+}$contacts [3.640 (2) Å] (Hu \& Gorun, 2001; Dunbar, 1998; Dias \& Gorden, 1996) with the η^{5}-pyrazole $-\mathrm{K}^{+}$distances in (I) suggests that there is a strong π bond with the potassium ion in

Figure 1
The asymmetric unit of (I) and some symmetry-related atoms. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x+1, y, z$; (ii) $-x+1,-y+1, z+\frac{1}{2}$; (iii) $-x+1,-y, z+\frac{1}{2}$; (iv) $x, y-1$, z.

Figure 2
Part of the crystal packing of (I), showing $\mathrm{Csp}^{2}-\mathrm{H} \cdots \pi$ interactions between chains. [Symmetry codes: (i) $-x+1, y, z$; (ii) $-x+1,-y+1, z+\frac{1}{2}$; (v) $x,-y+1, z+\frac{1}{2}$; (vi) $-x+\frac{1}{2}, y-\frac{1}{2}, z$; (vii) $-x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (viii) $x+\frac{1}{2}$, $y-\frac{1}{2}, z$; (ix) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
the latter. In addition, the $\left(\eta^{5}\right.$-pyrazole centroid) $\cdots \mathrm{K}^{+}$ distances are longer than the corresponding $\mathrm{Cp} \cdots \mathrm{K}$ interactions (2.699 \AA; Forbes et al., 2002). The pyrazolyl rings in (I) are located on opposite sides of the K atom, with a corresponding angle between the ring centroids of 92.2 (2) ${ }^{\circ}$. The σ N bonding interactions with the potassium ion (the average $\mathrm{K}-\mathrm{N}$ bond distance is $2.787 \AA$) are similar to those found in $\left(\left\{\mathrm{HB}\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Pz}\right]_{3}\right\} \mathrm{K}(\mathrm{DMAC})\right)_{2}[2.885(7) \AA$ A $]$ and $(\{\mathrm{HB}[3-$ $\left.\left.\left.\left(\mathrm{CF}_{3}\right), 5-\left(\mathrm{CH}_{3}\right) \mathrm{Pz}\right]_{3}\right\} \mathrm{K}(\mathrm{DMAC})\right)_{2}[2.827$ (4) \AA] (Pz is pyrazole and DMAC is dimethylacetamide; Dias \& Gorden, 1996). The (μ-BH) $\cdots \mathrm{K}$ contacts $(2.88 \AA$) are shorter than π interactions and can be described as s-block agostic interactions (a donoracceptor interaction type), providing an extra stability to the polymeric complex. The intrachain $\mathrm{K} \cdots \mathrm{K}(x, y-1, z)$ separation is equal to the b unit-cell dimension, i.e. 5.843 (3) \AA, while the interchain separation is equal to half of the a unit-cell dimension [8.584 (3) Å]. Several Csp ${ }^{2}-H \cdots \pi$ interactions (average distance $2.88 \AA$) are strong enough to direct the crystal packing through interpolymeric chain interactions between equivalent planes ([100] and [200]; Fig. 2).

The formation of the by-product complexes (II)-(IV) is explained by a disproportionation of the Grignard reagent known as the Schlenk equilibrium. Complex (II) suggests solvation and association, by which MgCl_{2} is also formed in solution, and associations by bridging halide atoms predominate. In addition, in complexes (III) and (IV), a large solvent effect is present during the reaction, especially when a strong donor solvent such as tetrahydrofuran (THF) is used. In general, in complexes (II)-(IV), ligand (I) coordinates in a $\kappa^{2} N, N^{\prime}$ fashion, with boat-shaped central $\mathrm{BN}_{4} \mathrm{Mg}$ units. The $\mathrm{B}-\mathrm{N}$ bond distances in the $\mathrm{H}_{2} \mathrm{BN}_{2}$ group for compounds (II)(IV) (average $1.551 \AA$) are not significantly different from those in pyrazolyl groups (average $1.562 \AA$; Allen, 2002). The average $\mathrm{Mg}-\mathrm{N}$ bond distances for complexes (II) and (III) $(2.138 \AA)$ are shorter than the average distance for complex

Figure 3
The major disorder component of (II), with displacement ellipsoids shown at the 50% probability level.
(IV) $(2.186 \AA)$. All these $\mathrm{Mg}-\mathrm{N}$ bond distances are typical of the σ-bonding distances in similar magnesium complexes (Takahashi et al., 1998; Malbosc et al., 1999; Viebrock \& Weiss, 1994; Bailey et al., 2000, 2003).

In the asymmetric molecular structure (II) (Fig. 3), two Mg atoms are bridged by two Cl atoms, forming a square $\mathrm{Mg}_{2} \mathrm{Cl}_{2}$ core in which the $\mathrm{Mg}-\mathrm{Cl}-\mathrm{Mg}$ angles are 94.05 (3) and 94.55 (3) ${ }^{\circ}$, while the $\mathrm{Cl}-\mathrm{Mg}-\mathrm{Cl}$ angles are 84.08 (3) and $85.99(3)^{\circ}$. An octahedral environment is observed for atom Mg 1, while a rare distorted square-pyramidal environment is

Figure 4
The molecular structure of (III). Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a pseudo-axial B$\mathrm{H} \cdots \mathrm{Mg}$ interaction.

Figure 5
The major disorder component of one of the two independent molecules of (IV), with displacement ellipsoids shown at the 50% probability level. [Symmetry code: (i) $-x,-y+1,-z+1$.]
adopted by atom Mg 2 . The boat conformation of the ring containing atom Mg 1 is characterized by dihedral angles at atoms B 1 and Mg 1 of 46.48 (17) and 13.92 (15) ${ }^{\circ}$, respectively, which results in a boat slightly flatter than that in (I). In the case of the six-coordinated Mg 1 atom, both disordered THF molecules are in axial positions, with $\mathrm{Mg} 1-\mathrm{O} 1$ and $\mathrm{Mg} 1-\mathrm{O} 2$ bond distances of 2.0920 (15) and 2.1477 (15) \AA, respectively. It should be noted that the $\mathrm{Mg} 1-\mathrm{O} 1$ and $\mathrm{Mg} 1-\mathrm{O} 2$ bonds are both almost perpendicular to the $\mathrm{Cl} 1 / \mathrm{Cl} 2 / \mathrm{N} 1 / \mathrm{N} 3$ plane [with angles of 93.07 (4) and $87.49(4)^{\circ}$, respectively]. The boat conformation of the Mg2-containing ring is characterized by dihedral angles at atoms B 2 and Mg 2 of 47.59 (15) and $27.80(16)^{\circ}$, respectively. In addition, the distorted squarepyramidal environment of atom Mg 2 involves a rather short $\mathrm{Mg} 2-\mathrm{O} 3$ bond distance $[2.0201$ (15) \AA], with atom Mg 2 lying 0.40 (3) \AA out of the $\mathrm{N} 5 / \mathrm{N} 7 / \mathrm{Cl} 1 / \mathrm{Cl} 2$ plane. Selected bond lengths and angles are listed in Table 2.

The X-ray structure of compound (III) (Fig. 4) reveals a bischelate complex, with a square-pyramidal geometry around the two Mg atoms in the asymmetric unit. The short $\mathrm{Mg}-\mathrm{O}$ interactions [2.0397 (16) and 2.0233 (17) Å] agree well with previously reported values (Takahashi et al., 1998; Malbosc et al., 1999; Viebrock \& Weiss, 1994; Bailey et al., 2000, 2003). Selected bond lengths and angles for (III) are listed in Table 3. The boat conformation of the B1-containing ring is characterized by dihedral angles at atoms B1 and Mg1 of 48.43 (15) and $23.52(17)^{\circ}$, respectively. However, a more pronounced boat conformation, with dihedral angles of 53.81 (15) and $41.29(16)^{\circ}$ for atoms B2 and Mg1, is observed for the other chelate ring; this conformation could be related to a weak pseudo-axial $\mathrm{B}-\mathrm{H} \cdots \mathrm{Mg}$ interaction (distance 2.69 Å) (Takahashi et al., 1998; Malbosc et al., 1999). Moreover, the observed strong $\mathrm{Mg}-\mathrm{O}$ interaction induces the Mg atom to be located 0.39 (3) \AA out of the N1/N3/N5/N7 plane.

The X-ray crystal structure of (IV) (Fig. 5), on the other hand, also reveals a bis-chelate complex, but with an octahedral environment for the Mg atoms. The two Mg atoms in the asymmetric unit are located on inversion centres, while the average $\sigma-\mathrm{N}-\mathrm{Mg}$ bond distance $(2.186 \AA$) is a little longer than the corresponding distance in complex (III). The axial positions are occupied by two disordered THF molecules, with $\mathrm{Mg}-\mathrm{O}$ bond lengths [2.1735 (10) and 2.1989 (10) \AA] longer than those in complex (III). As a result, the boat conformation in complex (IV) is flatter than that in complex (III), with dihedral angles at atoms B2 and Mg1 of 45.60 (17) and $18.44(18)^{\circ}$, respectively. Selected bond lengths and angles for (IV) are listed in Table 4, and more information about the dihedral angles for all complexes is given in Table 5.

Experimental

All solvents and reagents were used as received from Aldrich and Fisher. The starting material (I) was prepared as described by Trofimenko (1966). Colourless needle-shaped crystals were grown from a concentrated THF solution at room temperature. A suitable crystal was selected from the resulting batch. A solution of (I) $(1.000 \mathrm{~g}, 5.358 \mathrm{mmol})$ in THF (5 ml) was treated with MeMgCl
$(1.8 \mathrm{ml}, 3.0 \mathrm{M}$ in THF, 5.358 mmol$)$ at room temperature. After 3 h , the solvent and volatile components were removed under vacuum, diethyl ether was added $(10 \mathrm{ml})$ and the suspension was filtered under nitrogen atmosphere through Celite 521. The final solution was concentrated (5 ml) and left at room temperature for 2 d to give colourless plate-shaped crystals of (II) (1.69 mmol , yield 63%). Colourless plate-shaped crystals of complexes (III) and (IV) were obtained in a similar manner to (II), but the reaction times were 10 and 24 h , respectively [(III): 1.82 mmol , yield 68%; (IV): 1.91 mmol , yield 72%]. Suitable crystals were selected from the resulting batch. Owing to the air- and moisture-sensitive nature of the final product, reliable microanalysis was not possible.

Compound (I)

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)\right.$]
$M_{r}=186.07$
Orthorhombic, Cmc_{2}
$a=17.167$ (3) 』
$b=5.843$ (4) \AA
$c=8.754$ (3) A
Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.958, T_{\max }=0.965$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.056$
$S=1.00$
926 reflections
64 parameters
1 restraint
$V=878.1(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.55 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
$0.32 \times 0.06 \times 0.06 \mathrm{~mm}$

2664 measured reflections
926 independent reflections
893 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
373 Friedel pairs
Flack parameter: 0.10 (5)

Compound (II)

Crystal data

$\left[\mathrm{Mg}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{3}\right]$
$M_{r}=629.78$
Monoclinic, $P 2_{6} / n$
$a=15.119$ (3) A
$b=13.862(2) \AA$
$c=15.453$ (3) \AA
$\beta=99.319(3)^{\circ}$
$V=3195.9(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
$0.48 \times 0.32 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.894, T_{\text {max }}=0.951$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{K} 1-\mathrm{N} 1^{\text {x }}$	2.7870 (15)	K1-C1	3.3481 (18)
$\mathrm{K} 1-\mathrm{N} 1^{\text {xi }}$	2.7870 (15)	K1-C2	3.4734 (18)
K1-N2	3.0252 (14)	K1-C3	3.2721 (17)
K1-N1	3.1003 (15)		
K1 \cdots H111 ${ }^{\text {xii }}$	2.67	K1 $\cdots \mathrm{H} 111^{\text {xiii }}$	2.67
K1 \cdots H112 ${ }^{\text {xii }}$	3.01	K1 $\cdots \mathrm{H} 112^{\text {xiii }}$	3.01
$\mathrm{K} 1 \cdots \mathrm{H} 112^{\text {iv }}$	2.78	$\mathrm{C} 2 \cdots \mathrm{H} 1^{\text {xiv }}$	2.88
K1 \cdots H111 ${ }^{\text {x }}$	3.48		
$N 1^{x}-\mathrm{K} 1-\mathrm{N} 1^{\text {xi }}$	71.71 (6)	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{B} 1-\mathrm{N} 2$	110.6 (2)

Symmetry codes: (i) $-x+1, y, z$; (iv) $x, y-1, z ;$ (x) $-x+1,-y+1, z-\frac{1}{2}$; (xi) x, $-y+1, z-\frac{1}{2}$; (xii) $-x+1,-y+2, z-\frac{1}{2}$; (xiii) $x,-y+2, z-\frac{1}{2}$; (xiv) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

Table 2
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{Cl} 1-\mathrm{Mg} 1$	$2.5229(8)$	$\mathrm{Mg} 2-\mathrm{N} 5$	$2.1310(18)$
$\mathrm{Cl} 1-\mathrm{Mg} 2$	$2.4579(8)$	$\mathrm{Mg} 2-\mathrm{N} 7$	$2.1393(17)$
$\mathrm{Cl} 2-\mathrm{Mg} 1$	$2.4932(8)$	$\mathrm{B} 1-\mathrm{N} 2$	$1.556(3)$
$\mathrm{Cl} 2-\mathrm{Mg} 2$	$2.4681(8)$	$\mathrm{B} 1-\mathrm{N} 4$	$1.554(3)$
$\mathrm{Mg} 1-\mathrm{N} 1$	$2.1352(18)$	$\mathrm{B} 2-\mathrm{N} 6$	$1.550(3)$
$\mathrm{Mg} 1-\mathrm{N} 3$	$2.1301(17)$	$\mathrm{B} 2-\mathrm{N} 8$	$1.549(3)$
$\mathrm{N} 1-\mathrm{Mg} 1-\mathrm{N} 3$	$90.34(7)$	$\mathrm{N} 5-\mathrm{Mg} 2-\mathrm{N} 7$	$87.15(7)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2$	$178.09(6)$		

Compound (III)

Crystal data
$\left[\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$
$M_{r}=390.36$
Triclinic, $P \overline{1}$
$a=9.951$ (3) \AA
$b=10.741$ (2) \AA
$c=20.996$ (3) \AA
$\alpha=99.137(5)^{\circ}$
$\beta=97.410(4)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min }=0.982, T_{\max }=0.997$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049 \quad 537$ parameters
$w R\left(F^{2}\right)=0.115$
$S=1.00$
8386 reflections
$\gamma=107.909(3)^{\circ}$
$V=2070.2(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
$0.42 \times 0.26 \times 0.12 \mathrm{~mm}$

17263 measured reflections
8386 independent reflections 5502 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 4
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (IV).

$\mathrm{Mg} 1-\mathrm{N} 1$	$2.1958(11)$	$\mathrm{Mg} 2-\mathrm{N} 5$	$2.1894(12)$
$\mathrm{Mg} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.1958(11)$	$\mathrm{Mg} 2-\mathrm{N} 5^{\mathrm{ii}}$	$2.1894(12)$
$\mathrm{Mg} 1-\mathrm{N} 3$	$2.1904(11)$	$\mathrm{Mg} 2-\mathrm{N} 7^{\mathrm{M}}$	$2.1904(12)$
$\mathrm{Mg} 1-\mathrm{N} 3^{\mathrm{i}}$	$1.5487(19)$	$\mathrm{B} 2-\mathrm{N} 7^{\mathrm{ii}}$	$2.1690(12)$
$\mathrm{B} 1-\mathrm{N} 2$	$1.5470(19)$	$\mathrm{B} 2-\mathrm{N} 8$	$2.1690(12)$
$\mathrm{B} 1-\mathrm{N} 4$			$1.561(2)$
		$1.545(2)$	
$\mathrm{N} 1-\mathrm{Mg} 1-\mathrm{N} 3$	$88.24(4)$	$\mathrm{N} 5-\mathrm{Mg} 2-\mathrm{N} 7$	
$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{N} 3$	$91.76(4)$	$\mathrm{N} 5^{\mathrm{ii}}-\mathrm{Mg} 2-\mathrm{N} 7$	$88.99(4)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y,-z$.

Compound (IV)

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BN}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]$	
$M_{r}=462.47$	
Triclinic, $P \overline{1}$	$V=105.568(3)^{\circ}$
$a=9.4171(19) \AA$	$Z=2$
$b=10.936(4) \AA$	$\mathrm{Mo} K \alpha$ radiation
$c=13.013(2) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\alpha=94.069(3)^{\circ}$	$T=150(2)$
β	$0.40 \times 0.26 \times 0.12 \mathrm{~mm}$

$\beta=109.329$ (3) ${ }^{\circ}$
$0.40 \times 0.26 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.962, T_{\text {max }}=0.984$
10757 measured reflections
6335 independent reflections 4305 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
48 restraints
$w R\left(F^{2}\right)=0.109$
H -atom parameters constrained
$S=1.01$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$
6335 reflections

329 parameters

Table 5
Selected dihedral angles $\left({ }^{\circ}\right)$ between planes 1 and 2 for compounds (I)-(IV).

Compound	Plane 1	Plane 2	Angle
(I)	N1/N2/N3/N4	N2/B1/N4	58.78 (16)
(II)	N1/N2/N3/N4	N2/B1/N4	$46.48(17)$
	N1/N2/N3/N4	N1/Mg1/N3	$13.92(15)$
	N5/N6/N7/N8	N6/B2/N8	$47.59(15)$
	N5/N6/N7/N8	N5/Mg2/N7	$27.80(16)$
(III)	N1/N2/N3/N4	N2/B1/N4	$48.43(15)$
	N1/N2/N3/N4	N1/Mg1/N3	$32.52(17)$
	N5/N6/N7/N8	N6/B2/N8	$53.81(15)$
	N5/N6/N7/N8	N5/Mg1/N7	$41.29(16)$
(IV)	N1/N2/N3/N4	N2/B1/N4	$45.60(17)$
	N1/N2/N3/N4	N1/Mg1/N3	$18.44(18)$

H atoms were included in the refinement at calculated positions, in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.99 \AA$ and $\mathrm{B}-\mathrm{H}$ distances of 1.11 A . The $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{B})$. The refinement of positional disorder in complexes (II) and (IV) was resolved with two components and the use of similarity restraints. The THF molecules in (II) are disordered, and the pairs of atoms $\mathrm{C} 15 / \mathrm{C} 15 A, \mathrm{C} 18 / \mathrm{C} 18 A$ and $\mathrm{C} 23 / \mathrm{C} 23 A$ have occupancy ratios of 80:20, 79:21 and 86:14\%, respectively. One disordered THF molecule is also found in the asymmetric unit of complex (IV); atom pairs C7/ $\mathrm{C} 7 A, \mathrm{C} 8 / \mathrm{C} 8 A$ and $\mathrm{C} 9 / \mathrm{C} 9 A$ each have an occupancy ratio of $82: 18 \%$.

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.03; Sheldrick, 2008), plus WinGX2003 (Farrugia, 1999) for (I); software used to prepare material for publication: SHELXL97.

DJLG gratefully acknowledges the Universidad de Oriente (UDO) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3139). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Ashby, E. \& Arnott, R. (1968). J. Organomet. Chem. 14, 1-11.
Bailey, P., Coxall, R., Dick, C., Fabre, S., Henderson, L., Herber, C., Liddle, S., Loroño-González, D., Parkin, A. \& Parsons, S. (2003). Chem. Eur. J. 9, 4820-4828.
Bailey, P., Dick, C., Fabre, S. \& Parsons, S. (2000). J. Chem. Soc. Dalton Trans. pp. 1655-1661.
Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Dias, V. \& Gorden, J. (1996). Inorg. Chem. 36, 318-324.
Dias, V., Lu, H., Ratcliff, R. \& Bott, S. (1995). Inorg. Chem. 34, 1975-1976.
Dunbar, R. (1998). J. Phys. Chem. A, 102, 8946-8952.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Forbes, G. C., Kennedy, R., Mulvey, R., Roberts, B. \& Rowling, R. (2002). Organometallics, 21, 5115-5121.
Gibson, V., Segal, J., White, A. \& Williams, D. (2000). J. Am. Chem. Soc. 122, 7120-7121.
Hanecker, E., Hodgkins, T. G., Niedenzu, K. \& Nöth, H. (1985). Inorg. Chem. 24, 459-462.
Hu, Z. \& Gorun, M. (2001). Inorg. Chem. 40, 667-671.
Malbosc, F., Kalck, P., Daran, J. \& Etienne, M. (1999). J. Chem. Soc. Dalton Trans. pp. 271-272.
Sheldrick, G. M. (1996). SADABS. Version 2.06. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Takahashi, Y., Akita, M., Hikichi, S. \& Moro-Oka, Y. (1998). Organometallics, 17, 4884-4888.
Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.
Trofimenko, S. (1993). Chem. Rev. 93, 943-980.
Viebrock, H. \& Weiss, E. (1994). J. Organomet. Chem. 464, 121-126.

